Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cross-polarization (CP) is a technique commonly used for the signal enhancement of NMR spectra; however, applications to quadrupolar nuclei have heretofore been limited due to a number of problems, including poor spin-locking efficiency, inconvenient relaxation times, and reduced CP efficiencies over broad spectral bandwidths─this is unfortunate, since they constitute 73% of NMR-active nuclei in the periodic table. The Broadband Adiabatic Inversion CP (BRAIN-CP) pulse sequence has proven useful for the signal enhancement of wideline and ultra-wideline (i.e., 250 kHz to several MHz in breadth) powder patterns arising from stationary samples; however, a comprehensive investigation of its application to half-integer quadrupolar nuclei (HIQN) is currently lacking. Herein, we present theoretical and experimental considerations for applying BRAIN-CP to acquire central-transition (CT, +1/2 ↔ −1/2) powder patterns of HIQN. Consideration is given to parameters crucial to the success of the experiment, such as the Hartmann–Hahn (HH) matching conditions and the phase modulation of the contact pulse. Modifications to the BRAIN-CP sequence such as flip-back (FB) pulses and ramped contact pulses applied to the 1H spins are used for the reduction of experimental times and increased CP bandwidth capabilities, respectively. Spectra for a series of quadrupolar nuclei with broad CT powder patterns, including 35Cl (S = 3/2), 55Mn (S = 5/2), 59Co (S = 7/2), and 93Nb (S = 9/2), are acquired via direct excitation (CPMG and WCPMG) and indirect excitation (CP/CPMG and BRAIN-CP) methods. We demonstrate that proper implementation of the sequence can enable 1H-S broadband CP over a bandwidth of 1 MHz, which to the best of our knowledge is the largest CP bandwidth reported to date. Finally, we establish the basic principles necessary for simplified optimization and execution of the BRAIN-CP pulse sequence for a wide range of HIQNs.more » « less
-
3D relaxation-assisted separation of wideline solid-state NMR patterns for achieving site resolutionHigh-resolution separation of overlapped wideline solid-state NMR patterns is achieved with regularized 3D relaxation assisted separation (RAS).more » « less
An official website of the United States government
